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Diffuse Scattering in Eleetron Diffraction Patterns. II. Short-Range Order Scattering 
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The general method of computing the intensities of diffuse scattering in electron diffraction patterns, 
outlined by Cowley & Pogany in Part I, has been applied to the case of diffuse scattering given by 
the short-range ordering in binary solid solutions. If the diffuse scattering from individual crystal slices, 
of thickness greater than the effective range of ordering, can be assumed to be kinematical, the total 
diffuse scattering can be expressed in terms of the usual short-range order parameters, ~, and 'dynamical 
factors'. When the diffuse scattering from a slice cannot be assumed to be kinematical, as in the case of 
copper-gold alloys, a new type of order parameter, involving some higher-order correlations, must be 
introduced. Expressions are derived for the absorption coefficients which must be applied to the Bragg 
reflexions. The intensity of diffuse scattering from a single slice of crystal is calculated for a simple 
domain model of short-range order to evaluate the order of magnitude of departures from kinematical 
scattering and the possible sensitivity of the diffuse intensity to higher-order correlations. The methods 
are outlined by which diffuse intensity could be calculated for the whole crystal by a modification 
of the n-beam dynamical multi-slice procedure and a procedure for the approximate calculation of 
multiple-diffuse scattering is suggested. 

Introduction 

The first paper of this series (Cowley & Pogany, 1968), 
hereafter referred to as I, contained a general account 
of the theory and computational methods for the cal- 
culation of diffuse scattering in electron diffraction pat- 
terns using n-beam dynamical theory. In the present 
paper we take up the case of the diffuse scattering due 
to short-range ordering of atoms in a crystal, such as 
is given by binary alloy solid solutions in the tempera- 
ture range above the critical temperature at which long- 
range order disappears. Previously it was assumed that 
for such alloys the range over which there is appre- 
ciable correlation of atomic positions is only a few unit 
cells. Recently evidence has accumulated that in many 
cases, for temperatures not too much greater than the 
critical temperature, there may be some degree of cor- 
relation over distances of 30 or 40 A or more (see, for 
example, Watanabe & Fisher, 1965). However if we 
confine our attention to systems where this does not 
occur, or make the assumption, as a first approxima- 
tion, that these relatively long-range correlations are 
small compared with correlations between near neigh- 
bours, we can assume that the correlation range to be 
considered is of about the same magnitude as the thick- 
ness of slice which may be used in n-beam calculations 
without introducing appreciable error. Under these 
circumstances it is a reasonable assumption that for 
computational purposes the crystal may be divided into 
slices between which no correlation exists in the devia- 
tions from the average lattice. Then, as pointed out 
in part I, the total diffuse intensity can be expressed 
as the sum of the intensities of diffuse scattering orig- 
inating in each of the slices considered separately, and 
'dynamical factors' may be used. 

It was suggested in part  I that in the case that the 
diffuse scattering from an individual slice cannot be 
closely approximated by kinematical scattering theory, 
the usual short-range order parameters used in, and 
derivable from, X-ray diffraction observations may not 
be sufficient to define the diffuse scattering observed. 
It is then necessary to introduce higher-order correla- 
tion coefficients in order to calculate intensities, and, 
correspondingly, from the observed intensities it may 
be possible to derive some information beyond that 
which may be deduced from kinematical scattering ex- 
periments. The purpose of this paper will be, in part, 
to provide a basis for the exploration of these possi- 
bilities. 

Our arguments will be phrased in terms of the slice 
method of n-beam calculations (Goodman & Moodie, 
1965) but it is clear that they will apply equally well 
if matrix methods such as described by Fisher (1968) 
are used to treat the n-beam interactions, and the rea- 
sonable assumption is made that the diffuse scattering 
from any infinitesimally thick crystal layer may be taken 
to be the same as for a slice of thickness exceeding 
the range of correlation of atomic positions. 

Kinematical diffuse scattering by slices 

Kinematically, the distribution of diffuse scattering 
power in reciprocal space, for a binary AB alloy with 
fractions mA and rnB of A and B atoms, is given by 

IAF'(u)I2= MmAmBIfA--fB[ 2 X ~tmn exp {2rciu. r~}, 
lmn 

where M is the total number of atoms, the vectors r~ 
denote the interatomic vectors and the OClmn are the 
Warren short-range order parameters (Cowley, 1950) 
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defined in terms of the probability PAB. t that a B atom 
should be separated from an A atom by the vector r~ 
(coordinates la, mb, no); thus 

PAB, i = mB(1 --O~lmn). (1) 

When we deal with the projection of a thin slice of a 
crystal, the distribution of scattering power for the cor- 
responding section of reciprocal space is 

IAF'(uv)I2= MmAmB X X (X O~tmn) exp {27ri(ul + mv)} , 
1 m n 

(2) 
where u, v, w are the coordinates in reciprocal space. 

In setting up n-beam dynamical calculations, we 
must consider the scattering from each slice in terms 
of the phase-grating approximation. The transmission 
function for the slice is 

exp {iaq(xy)}= exp {ia[q~o(xy)+ Aq~(xy)]} , 

where q~o(xy) is periodic, being the projection of the 
average potential distribution, and a = 2zrme2/h z. Fou- 
rier transformation of this gives 

F(uv)=,~" exp {iaq~o(xy)},~" exp {icrAq~(xy)} . 

If the deviations from the average projection are small 
we may expand the corresponding exponential and 
write 

F(u) = F(u) + AF(u) 

= ~ "  exp {icrq~o(xy ) },[ci(uv) + iAF'(uv) - . . .  ] 

-"~ F0(u) + Fo(u)*iAF'(u) (3) 

where here, as in what follows, the vector u is redefined 
to refer to the two-dimensional section of reciprocal 
space (coordinates u,v) involved with n-beam calcula- 
tions. 

F(n) is the Fourier transform of the averaged value 
of exp {ia~o(xy)} and so represents the contributions of 
the slice to the amplitudes of the sharp 'Bragg' reflex- 
ions. It may be equated to F0(u)=~-exp {ia~oo(x,y)} 
if the higher-order (absorption) terms in the expansion 
of ~ -exp  {iaAfo} are neglected. The term AF(u)_  ~ 
Fo(u).iAF'(u) represents the diffuse scattering. 

It was shown in part I that, assuming the kinematical 
approximation for such a case of diffuse scattering, the 
total diffuse scattering for the whole crystal may be 
expressed in the form 

Ioabs(u) = NIAF'(u)I 2 . D(u), (4) 

where IAF'(u)I 2 is given by (2) and D(u) is the dynamical 
factor which may be calculated for each set of coor- 
dinates u = h + v, fo / the  set of reciprocal lattice vectors 
h, where v is a vector in the first Brillouin zone. This 
holds if the deviation from the average lattice can be 
expressed in the form Afp=Acp0, X Cnd(r-an) where 

n 

the en are real numbers. In the present case we put 
A~00 equal to (~0A--q~B) and Cn = + 1 so that to calculate 

D(u) we insert (fA--fB) as a diffuse scattering amplitude 
into the n-beam dynamical diffuse scattering calcula- 
tions, performed either by the slice method or by the 
matrix method. This dynamical factor has been calcu- 
lated by Fisher (1965), using matrix methods, for sev- 
eral points in reciprocal space for copper-gold alloys. 

Once this dynamical factor has been calculated for 
a given system, the kinematical intensity function 
IAF'(n)I z can be derived, and the short-range order co- 
efficients contained in equation (2) can therefore be 
deduced by a Fourier transform operation. 

Phase grating approximation for diffuse scattering 

In the projection of the potential of a slice which may 
be several unit cells in thickness, the deviations from 
the average value of projected potential may be several 
times (~0A-~0B). In the case of copper-gold alloys, for 
example, these deviations may represent several times 
the scattering potential of a moderately heavy atom. 
Hence the assumption made in equation (3), that 
crA~o(xy)~ 1, may not be a good approximation and 
consequently there may be appreciable deviations from 
the predictions based on kinematical diffuse scattering. 

The deviations from kinematical conditions will be 
greatest when the electron beam is close to a principle 
axis of the crystal. Then the projection, ~o(xy), will con- 
sist of a number of clearly defined peaks of projected 
potential. The validity of the kinematical formula (2) 
depends on the assumption of a linear relationship be- 
tween the heights of these peaks and their scattering 
factors. Since in the phase grating approximation the 
scattering factors are given by 

o~[ exp {ia~olo(xy)}- 1], (5) 

the relationship is not linear unless the projected po- 
tentials of the peaks, fo~(xy), are very small. We must 
therefore reformulate the scattering function in terms 
of the complex scattering factors (5). 

Consider an AB alloy with N layers of atoms per 
slice. The projection of the slice in the direction near 
to that of a principal axis will contain potential peaks 
of (N+  1) different kinds, namely, 

N~OA, ( N -  1)~0A+ qTB, (N--2)f0A+2~0B,..., 

~A + ( N -  1)~0B and N~0B. 

If we make the assumption that there is no appreciable 
overlapping of the projected peaks, the scattering fac- 
tors associated with these peaks are 

f n = ~ ' [  exp {ia[n~oA + ( N - n ) ¢ z ] } -  1]. (6) 

Then the total scattering amplitude of the layer is given 
by 

F(u )=d(u )+  X X f n  exp {27riu. rnt}, 
i n 

where the vectors rnt (components x~,y~,O) specify the 
positions of peaks with scattering factors fn. We can 
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then calculate the intensity of diffuse scattering which 
would be given by an isolated slice as 

Is(u)= 22 Z Z 22fnf*m exp {2niu. (rn~--rmj)} • 
i j n m  

Let Pnm~ be the probability that a peak with scattering 
factor fm should be at a position given by vector ri 
from a fn  peak, so that r n i - r m j = r i ,  and let Mn be 
the fraction offn-type peaks, where the total number 
of peaks is P. 

Then 

Is(u) = P 22 X S Mnfn f*Pnmi  exp {2niu. r~}. (7) 
n m i 

We then introduce order parameters ~nmi defined by 
the relation 

Pnm*= Mm(1 + ynmdMnMm) (8) 

and (7) becomes 

Is(u)= P 22 22 M n M m f n f *  22 exp {2niu. r,} 
n m i 

+ P 22 22.fnf* 22 ~nmi exp {2niu. r ,}.  (9) 
n m i 

In this expression the first term is independent of the 
order parameters 7nm* and represents the sharp, Bragg 
reflexions due to the average, periodic part of the ex- 
ponential of the projected potential. This term is not, 
however, independent of the state of order, as in the 
kinematical case, since the relative proportions Mn of 
the different types of peaks will depend on the state 
of order and the relation between the complex fn  is 
not linear. 

The second term gives the diffuse scattering. This 
may be compared with equation (2). The following 
relationships between the parameters involved may be 
readily derived: 

M = N P ,  
N 

mA = 22 p .  M ~ ,  
p = l  

1 
22 .,Up. q .  ~q ,  . and 22n O~zmn- NmAmB p q 

The last equation follows from the relationship be- 
tween probabilities of atom pairs and probabilities of 
column pairs, 

NmA 22 PAA, tmn = 22 22 P • q . P2oq~M~ • 
n p q 

Hence values for the a parameters can be deduced from 
the ~, values. But the reverse is not the case. For ex- 
ample, given a line of n A atoms and ( N - n )  B atoms, 
we can derive from a knowledge of O~tmn values the 
average number of A atoms in a neighbouring line but 
not the probability that a given number, m, of A atoms 
will occur in the second line. The parameters O~lmn de- 
scribe only pair-wise correlations of atomic site occu- 
pancies. The parameters Mn and ~nrat depend on the 

correlations of occupancies of three or more atomic 
sites and so may be referred to as higher-order corre- 
lation coefficients, although not perhaps belonging to 
the most general class of such coefficients which could 
be defined. 

For a layer of thickness N atoms there will be a 
maximum of (N+ 1) 2 parameters 7nrm for each vector 
ri. These will not all be independent. From elementary 
considerations it is possible to deduce relations be- 
tween them: for example 

(a) 7nmi = 7 m n i  since MnPnmt = MmPmn~ • 

(b) 22 )Jnmi = 22 ~mn~ = 0 since 22 Pnmi = 1 . 
m m m 

(C) 22 ~nm* = 0 s i n c e  X Pnm*= PAlm. 
i i 

(d) For zero order, ~nm0 = - M n M m ,  except that 
Ynno= M n -  M2n . 

Absorption coefficients for Bragg reflexions 

From the first part of the expression (9) which gives 
the intensities of sharp, Bragg reflexions, we see that 
the intensity for the h,k reflexion can be written 

I h k / P = r ( h k )  . F*(hk) , 

where 
F ( h k ) =  ,Z Mn fn (hk ) .  (10) 

n 

In order to express this in terms of an absorption co- 
efficient, as normally defined, we define a complex 'po- 
tential' such that 

F(u) =o- ~- exp {i[a~oo(r)+iz(r)]}, (11) 

i.e. the kinematic structure factor is replaced by 

F'(u)=~{a~oo(r)+ iz(r)} = F~(u) + /F ; (u) .  

Putting ~00(r) equal to the average structure, 

~o0(r) = NmA(0A(r) + MmB~oB(r), 

we have 
N 

F(u)=o~[ 22 Mn exp {iaN(mA~oA+mBgB)}. 
n = 0  

exp {ia(n--NmA) (~0A--~0B)}], 

and substituting (pa = ~0A-- (PB and p = n - NmA, 

NmB 
F(u)--o~-[ exp {ia~00(r)} 22 M~ exp {iap~oa}]. (12) 

p= --NmA 

The summation may be written 

NmB 
Z M~o[1 +iap~oa-½(a~oa)2pZ-. . .] .  

p= --NmA 

For the first term 22 M~= 1 by definition. In the 
p 

second term 22 M ~ p = O  since the summation from 
p 

- N m a  to 0 represents the number of A atoms in defect 

A C 2 4 A  - 1" 
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of the average and the summation 0 to NmB represents 
the number of A atoms in excess of the average. Hence 
(12) becomes 

F(u) = ~ ' [  exp {i0.~oo(r)}. 

Nm B 1 Nm B 
(1-½(0.~o~)'- 22 Mvp2--~.._.(0.~oa)3 22 

p= --NmA p = - - N m A  

M ~ o . p 3 + . . . ) ] .  

For the series in the bracket [ . . .  ] we make the approx- 
imation [1 - xl - x2 . . . ]  ~ exp ( -  xl) exp ( -  x2). •. 

Then 

F(u)-~ o-~[ exp (i (a~oo(r)- 1 (0.~oa)3 Z M y .  p3} 
• p 

-{½(0.~oa) z X M2~.pZ))]. (13) 
p 

Hence the real, average potential is modified by the 
addition of third and higher odd-order terms, while an 
imaginary part is added consisting of second and higher 
even-order terms. For most cases of interest it will 
probably be sufficient to add only the second order 
imaginary term 

NmB 
x 2 ( r ) = ½ ( a f o a )  2 X My . p 2 ,  

p =  --NmA 

or to modify the structure factor by the addition of 

i0. 2 
iFi(u) = -~-  [(fA--fB)*(fA--fB)] 22 M y .  p2 . (14) 

p 

The modification AFt(u) of the real part of the struc- 
ture factor will come mostly from the Fourier trans- 
form of the third-order term, z3(r). 

Calculation of these absorption terms for any specific 
case requires a knowledge of the M~ values. As pre- 
viously indicated, these cannot be derived from the 
short-range order coefficients or from any existing 
theory of ordering. The only approach which appears 
possible at the moment is to derive the values for the 
M~ appropriate to a postulated model of atomic ar- 
rangement. To serve as examples for the derivation of 
M~ values and to provide estimates of the order of 
magnitude of the absorption effects to be expected, 
three limiting cases will be considered. 

(a) Zero short-range order 

For a completely random arrangement of A and B 
atoms, if we consider a row of N atoms in the beam 
direction, the probability of n A atoms and N - n  B 
atoms will be given by 

~,~7t/f n = I 'Nv~n  vmN--n 

if n varies from 0 to N; then 

NmB N 
22 My  . p2= 22 Cff(n_ NmA)2 . maman N-n 

p= --NmA n=0 
N 

= S C~m"am~-"[n(n- N)  
n=O 

- N m a ( n -  NmA) + NnmB] = N m a m ~ .  
Similarly 

NmB 
S M ~ .  p3 = NmAmB(mB--mA).  

p= --NmA 

Thus 
0-2 

Fe(u) = ~ [( fA--fB)*(fa-- fB)]NmAmB. (15) 

It follows that, as might be expected in the absence 
of correlation, the absorption factor for N layers of 
atoms is N times that for a single layer of atoms, for 
which 

z 2 ( r )  = ½mAmB(0.~0a) 2 • 

This is the same result as is obtained directly from the 
considerations of part I. There it was shown that the 
absorption factor could be written as Z (r) --½0.2(d~o2(r)), 
where A~o(r) is the deviation from the average potential. 
Since A~o 2 =  m ~  (~0A--~0B) 2 when there is an A atom, i.e. 
with relative probability mA, and A~o2=m~,(~oa--gB) 2 
when there is a B atom, we get k0.2(A~o2)=½a2mxmB~o~, 
as before. 

(b) Per[ect order within a slice 
We assume that perfect ordering exists within a slice, 

but there is no correlation between slices• This assump- 
tion corresponds to the case of a random sequence of 
out-of-phase domains, with perfect ordering within 
each domain. 

For some particular directions of the incident beam, 
a fraction ma of the projected peaks will correspond 
to N A atoms, and a fraction mB will correspond to 
N B atoms• This case represents the most extreme de- 
viation from the average projection for the zero short- 
range order case. 

Then 
.S, Mlo . p2 = mB(NmA)2 + mA(NmB)2 
p 

= NEmAmB, 

and ZE(r) = NEmAmB. ½0.2~o2. 

Thus, for these beam directions, the absorption term 
is greater than that for complete disorder, given by (15), 
by a factor N. It may be noted that for this case the 
higher-order terms will not be negligible unless Na(0a 
is small since, for example, 

X M v . p3 = NamAmB(mB_ mA), 
p 

,F, Mv  . p4 = N4mAmB(1 _ 3mAmB). 
p 

(c) Perfect order in domains within a slice 

Detailed considerations and calculations for specific 
cases have indicated that, irrespective of the choice of 



J. M. COWLEY A N D  R. J. M U R R A Y  333 

slice thickness (N atoms in a column) the presence of 
ordered domains with R atoms in a column (R < N) 
will lead to 

,S M ~ p  z = N R m A m B  , 
p 

,S M ~ p  3 = N R 2 m a m • ( m B -  mA). 
p 

These relations are exact for N divisible by R and very 
nearly correct for any R < N or for R an average value 
for variable domain size. The absorption functions to 
be applied in multislice calculations are then 

z(r) = ½RmAmBa2(A~p2(r)) 

for a single layer of atoms. This result is independent 
of the slice thickness chosen and also of any considera- 
tion of the coincidence, or otherwise, of slice and do- 
main boundaries. 

The form and order of magnitude of the second and 
third order terms of (13) have been determined for the 
case of copper-gold alloys of A3B composition by per- 
forming the self convolutions of the function (fA--fB). 
The atomic scattering curves were modified by a tem- 
perature factor of B = 0.7/~2 assumed to be appropriate 
to a temperature of about 200 °C. The results are shown 
in Fig. 1. The imaginary part of the scattering factor, 
given by the second order term is seen to fall off more 
slowly than the real part with scattering angle. The 
fall-off is comparable with that of the imaginary part 
due to thermal motion of the atoms (Hall & Hirsch, 
1965). 

Also the magnitude of the absorption term is of the 
same order as for that due to thermal motion. Thus 

Column Scat ter ing Factors 

6O 

4O 

A F, (×4ol 

0 ' 0"2 ' 0"4 ' 0"6 ' Sin_e/ 
- E l  

Fig. 1. The values of the average peak scattering factor for 
a column of 6 atoms calculated (a) kinematically, i.e. 
J'kin = 6(¼fau + ¼fcu), and (b) dynamically, i.e. fayza = IF(u)l = 
1½f0+½f31. Also shown are the second and third order 
absorption terms F~(u) and zlFr(u) (both scaled x 40) for a 
CuAu3 crystal assumed to have a domain size of 3 unit cells. 

for the (111) reflexion, F~(h)/Fr(h)=O'04, per layer of 
atoms, for perfect order within layers for which the 
domain size R = 3 .  This value may be compared with 
those due to thermal motion, namely 0.124 for gold 
and 0-045 for copper at 300°K (Hall & Hirsch, 1965; 
P. S. Turner, private communication). The third-order 
term modifying Fr(h) was also calculated for the case 
of ordered domains with R =  3. The value was found 
to be relatively small; approximately 0.003 of Fr(h). 
Thus the differences in the absorption coefficients 
which result from assuming different models for the 
state of short-range order are of such a magnitude that 
they should lead to experimentally observable intensity 
differences, given suitable specimens of copper-gold 
alloys. These conclusions will be tested by further cal- 
culation and by experimental observations, when pos- 
sible. 

Diffuse intensity from a single slice 

It was shown in part I that the intensity for diffuse 
scattering from the whole crystal could be expressed 
in terms of amplitudes calculated for single slices if, 
as in the case under consideration, the correlation in 
the deviations from the average lattice does not extend 
over greater distances than the slice thickness. The 
actual calculation of the diffuse scattering for the whole 
crystal involves the extension to the dynamical factor 
concept which was outlined in part I and will be treated 
in more detail in a later section. However it seems 
likely that the diffuse scattering intensity for the whole 
crystal will differ appreciably from that calculated for 
kinematical diffuse scattering from each slice, only if 
the intensity calculated for the diffuse scattering from 
a slice considered separately, as in equation (9), is ap- 
preciably different from the kinematical value. Hence, 
in order to evaluate the likely magnitude of the effects 
on diffuse scattering of deviations from kinematical 
scattering without the extreme labour of whole-crystal 
calculations, equation (9) was used to calculate the dif- 
fuse scattering intensity given by a single slice contain- 
ing a high degree of local order in the form of idealized 
simple domain configurations. 

The single slice was assumed to be of CuAu3, six 
unit cells thick in the beam direction, which was parallel 
to [001]. In the x and y directions it was assumed that 
out-of-phase domain boundaries, with random inter- 
domain shifts, occurred regularly every three unit cells. 
In the z direction a domain boundary was assumed to 
occur perpendicular to the z axis, half-way through the 
slice, separating two perfectly ordered domains of three 
unit cell thickness each. The four forms which such 
a domain boundary could take are, (1) no relative dis- 
placement of the columns of copper atoms, i.e. no 
anti-phase boundary; (2) a relative translation of col- 
umns of copper atoms by (a/2, a/2, 0), i.e. a 'good' type; 
(3) and (4), 'bad' type boundaries with translations, 
(a/2,0,a/2) and (O,a/2,a/2), not in the x - y  plane. 

Such domain sizes are of the same order of magni- 
tude as the average domain size which must be postu- 
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lated in order to give short-range order coefficients ap- 
proximately in agreement with experimental results on 
Cu3Au not far above the critical temperature (Moss, 
1965). The slice thickness involved is probably too 
great for accuracy in n-beam calculations, but may be 
assumed to give at least a rough indication of the mag- 
nitudes of dynamical effects to be expected. 

The special shape assumed for the domains simpli- 
fied the calculation of diffuse intensities considerably, 
since the only peaks which could occur from the pro- 
jection of the columns of atoms in the slice were f0, 
f3 and f6 and also intensities from domains separated 
in the x and y directions were additive. 

The two cases of particular interest for assessing the 
differences of dynamical and kinematical scattering 
behaviour are the case (1) above with no copper trans- 
lations, and the case of random phasing across the 
domain boundary in the z direction. For kinematical 
scattering the diffuse intensity is proportional to the 
thickness of the domain in the beam direction so that 
the diffuse intensity should be twice as great for the 
first of these cases as for the second. This may be 
approximately so for dynamical scattering but it is to 
be expected that differences in principle between dy- 
namical and kinematical scattering would show up be- 
cause the complex fn do not vary linearly with n, so 
that J; ¢ ½(f0 +f6). 

The values of the complex peak scattering factors, 
fn, were evaluated using a computer program developed 
by P.A.Doyle for evaluating complex scattering fac- 
tors for individual atoms. Computer programs were 
developed to calculate diffuse intensities and used to 
give intensity values along the lines (1, v, 0) and (3, v, 0) in 
reciprocal space for small intervals of the coordinate, v. 

Because the magnitudes and angular variation of the 
complex peak scattering factors, fn, are markedly dif- 
ferent from the kinematical scattering factors, it is con- 
venient to calculate diffuse scattering intensities by 
using a sort of pseudo-kinematical expression involving 
the f,~, thus 

N 
I '=P(fo--fn) ( f g - f * )  X { X ~ZzmnlN} exp {2rci(ul 

lm n=--N 

+ vm) } = If°-f'~lZ Ik~ (16) 
NZlfAu-fcul z • . 

For the case of no domain boundary within the slice, 
this expression withfn =f6 is identical with the dynam- 
ical intensity, layn, given by equation (9). The angular 
variation of the ratio Idyn / Ik ln  for this case is shown 
in Fig.2. 

The absolute magnitude of the diffuse intensity cal- 
culated dynamically is roughly an order of magnitude 
less than the kinematic value. This follows because the 
peak scattering factors, fn, are smaller in magnitude 
and vary less rapidly with the atomic number of the 
contributing atoms than the kinematic scattering fac- 
tors for the same number of atoms. The ratio of dy- 
namical and kinematic values varies strongly with scat- 

tering angle in a manner reminiscent of the modulation 
of intensities of gas diffraction patterns resulting from 
the varying phase differences of the complex atomic 
scattering factors of unequal atoms. 

For the other cases considered, involving good, bad 
or random phasing at the domain boundary, the large 
differences between the complex peak scattering factors, 
fn, and the kinematical scattering factors are similarly 
important and account for the major part of the dif- 
ference between dynamical and kinematical intensities. 
The remaining part of the difference is expressed by 
the value of the ratio Iayn/I'. 

In the vicinity of the (100) reciprocal lattice point 
this ratio is 0.84 for the case of a good domain bound- 
ary and also for both cases of bad domain boundaries. 
For random phasing the ratio is 0.91. In each case the 
value is only weakly dependent on the scattering angle, 
and does not vary by more than five per cent for 
(sin 0)/2 values out to 0.7. 

The positions of maxima and minima and the general 
shape of the diffuse scattering distributions in reciprocal 
space are very nearly independent of the model chosen 
and are close to the kinematical predictions. This is to 
be expected since these are determined almost entirely 
by the domain shapes and sizes in the x and y directions 
which were assumed to be the same in all cases. 

On the other hand, some deviations from the form 
of the kinematical diffuse scattering can occur under 
the special circumstances created by zeros in the con- 
tributions from particular models. For example, if the 
domain boundary in the z direction is good there will 
be zero intensity at the points (1,0,0) and (0,1,0) but 
for no domain boundary these is a maximum at each 
of these points. The differences in peak scattering fac- 
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0'05 
I t ! 0 I ! t I 

0 0"2 "4 0"6 

Fig. 2. The variation of the factor I'/Ikln = I fo-- f6F/( fA-- fB)  2, 
which modulates the dynamical intensities, with (sin 0)]2. 
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tors for these two cases lead to the result that for equal 
probabilities of no mistakes and good mistakes, the 
ratio Iayn/I' differs by about ten per cent for the (100) 
and (110) peaks as shown in Fig. 3. 

Although it has been shown that, for the special 
models considered, there are differences in diffuse inten- 
sities other than those directly attributable to the dif- 
ferences between the kinematical and complex peak 
scattering factors, the above results suggest that the 
derivation of information from diffuse scattering, other 
than that provided by kinematical diffraction experi- 
ments, may depend on the detection of relatively small 
variations in intensities. It remains to be seen whether 
the n-beam dynamical interactions occurring in crystals 
of greater thickness will enhance or reduce these varia- 
tions. 

Diffuse intensity from a crystal 

In order to calculate the effects of n-beam dynamical 
interactions on the diffuse scattering, and so get the 
diffuse scattering from the whole crystal, we make use 
of the generalization of the dynamical factor idea, as 
outlined in part I. We consider first the relatively simple 
case that the diffusely scattered radiation from any 
slice suffers multiple scattering by Bragg reflexions but 
is not again diffusely scattered, i.e. we ignore multiple 
inter-slice diffuse scattering. 

As before we write the scattering from a slice, for 
u # 0 ,  

F(u) = X X fro exp (2rciu. rm~} 
m i 

= XfmCm(u), 
t n  

where fra is given by (6) and the vectors rm~ specify 
the sites of the peaks with scattering factors fro. If we 
assume an amplitude of scattering fm(un) for the nth 
slice of the crystal, the diffuse scattering produced out- 
side the crystal, calculated by applying n-beam dynam- 
ical theory separately for each v vector, where u = h + v, 
as in part I, is written 7iron(u). This calculation does 
not allow for multiple diffuse scattering. Adding the 

Intensities (Arbitrary Units) /d./'Y~ 

/ /  

11,0,0) (1,1,0) 
O,v,O) 

Fig. 3. The variation of Iayn and I '  along the line from the 
(1,0, 0) to the (1,1,0) reciprocal lattice point, resulting from 
the non-linearity of the complex peak scattering factors, 
fn, in the case of fifty per cent 'good' type horizontal 
domain boundaries. I '  is calculated with the use of the 
approximation f3=½(f0+f6). The dotted curve shows the 
contribution from the domains with a 'good' boundary. 

amplitudes for all slices, the total diffuse scattering 
amplitude for the crystal is then 

x x 
m n 

and the intensity distribution is 

I(u)= x x x x 
m n p q 

But 

CmnCp*= X exp {27riu. rmn~}. S exp { -2zr iu .  r~aj} 
i j 

= P Z P(mn,pq, i) exp {2~riu. r~}, 
i 

where P(mn,pq, i) is the probability that the peak of 
scattering power f~ in the q slice will be displaced 
laterally by a vector r~ from a peak of scattering power 
fm in the n slice. 

Putting 

P(mn,pq, i) = M~o[1 + 7(mn,pq, i)/MmMr], 

the intensity expression then becomes 

I(u) = P Z Z X X MraM, Wmn(U)W*a(u ) 
m n p q 

X exp {2zriu. r ~} 
i 

+ P X X X X ~mn(U)~*a(u ) X 7(mn,pq, i) 
m n p q  i 

exp {2rriu. r~}, (18) 

where the first term represents the Bragg peaks which 
may be calculated by the usual n-beam dynamical, 
perfect-crystal technique, with structure factors modi- 
fied by absorption, and the second term represents the 
diffuse scattering in which we are now interested. Since 
we assume that there is no correlation of the deviations 
from the average lattice between slices, it follows that 
7(mn,pq, i)=O unless n=q. Also we may assume the 
correlation parameters to be the same in all layers, so 
we may put 7(mn,pn, i ) =  ?'rapt, and the diffuse intensity 
term becomes 

I~(u) = P  X X X ~ran(u) ~*,(u) X 7mp~ exp {2ztiu. r~}, 
m p n i 

(19) 

=P X X fmf*Om~(U) X 7mIo~ exp {2zciu. r~}. (20) 
m p i 

This is then identical with the expression in (9) for the 
diffuse intensity for a single layer except for the inser- 
tion of the dynamical factors 

Dm~0(u)= X Wmn(U) W*n(u)/f m(u)f* (u ) . 
n 

In order to calculate the diffuse intensity it is thus 
necessary to calculate separately the dynamical factors 
or, more directly, the sets of functions ~mn(U). This 
of course involves a great deal of computation, but 
once it has been accomplished the diffuse intensity cor- 
responding to different sets of order parameters 7m,* 
can be evaluated readily. 
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Multiple inter-slice diffuse scattering 

The deviation from kinematical diffuse scattering with- 
in a slice implies that multiple coherent diffuse scat- 
tering terms are appreciable within the range of atomic 
correlations. Under these circumstances it seems pos- 
sible that the multiple incoherent diffuse scattering 
terms representing repeated scattering between uncor- 
related regions of the crystal may also be appreciable. 
Such terms have been considered briefly in part I. 

The calculation of such multiple inter-slice diffuse 
scattering would appear to be very complicated and 
prohibitively lengthy unless some severe approxima- 
tions are made. 

One possible basis for approximation is the assump- 
tion that the dynamical factors, Dmv(u), are indepen- 
dent of crystal thickness. It has been shown by Fisher 
(1965, and private communication), for the case of 
kinematical scattering within a slice, that for a given u, 
the dynamical factor D(u) usually changes rapidly at 
first with increasing thickness and then oscillates 
about some limiting value. For copper-gold alloys the 
oscillations have a periodicity of about 100 A_ or less. 
Hence if we deal with relatively thick crystals it is a 
good assumption in this case to take D(u) as a constant 
when considering higher-order terms. 

On this basis we may write the intensity for single 
diffuse scattering, given by (20), as 

N 
I~',(u) = N~do(u)= x IO(u), 

n=l 

i.e. we assume that each slice, from 1 to N, gives the 
same contribution,/d°(U), to the final diffuse scattering. 

Then the second order term, corresponding to double 
diffuse scattering is 

I l(d2)(n) = ~" l~(nl) ~' / ~ ( u - n l ) d l l l  
n=l r=n 

___ ½N~I°(u),I°(u), 

and the total diffuse scattering will be 

Ia(n) = ~' ]~m~(u) 
m 

___~-[ exp {~- - l l ° (u ) ) -  1]. (21) 

On this basis the total effects of multiple inter-slice 
diffuse scattering could be calculated without a great 
deal of additional computation. 

The authors wish to express their gratitude to A.P. 
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A new and improved method of allowing for second-order thermal diffuse X-ray scattering, close to 
a reciprocal-lattice point, is proposed; an appropriate equation for first- and second-order contribu- 
tions is matched, by the method of least-squares, to the experimentally measured scattering data. 
A program was written for the I.C.T. 1905 computer and some K[ABC]hez values for KC1 were com- 
pared with those previously reported. 

Introduction 

Several investigators have shown that measurement of 
the thermal diffuse scattering of X-rays close to a 
reciprocal-lattice point provides values for elastic con- 

stants, which are - at least for cubic crystals - com- 
parable to those found by other methods (Wooster, 
1962). The diffuse intensity, due to the thermal motion 
of atoms within the crystals, may be considered as a 
sum of contributions from multiple photon-phonon 


